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Plan
● Physics motivation
● Overview of HBD hardware
● Analyzing HBD Data

● Monte-Carlo
● p+p collisions
● Au+Au
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Physics Motivation
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Physics motivation: Di-electrons
● QGP (Au+Au/d+Au/p+p)

● Heavy mesons (J/ ) and Ψ
open charm (Au+Au)
– Au+Au deconfinement in 

QGP, Initial state 
effects

● Light mesons ( , )ω φ
– Chiral symmetry 

restoration  in medium →
modification of mass and 
width, flow

● Direct photons
– Temperature of QGP

● Spin physics (p+p)
– J/  spin asymmetryΨ

 Phys. Rev. C 81, 034911 (2010)
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Di-electron spectra in PHENIX
● Pros

● Very good eid with RICH and EMCal

● 1% momentum resolution at φ region

● Excellent triggering (for high rate 
p+p events)

● Low material budget (  Little →
conversion background)

● Cons
● Limited acceptance

– π0 Dalitz and conversion 
(dominant source of 
electrons), only one leg

– Foreground spectrum is 
dominated (200:1 at the 
worst points) by 
combinatorics

 Phys. Rev. C 81, 034911 (2010)
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Overview of the HBD
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The Hadron Blind detector concept
● Reduce combinatorial background

● Identify Dalitz and conversion electrons even if only one leg 
reconstructed.

● Exploit small opening angle: Field free region up to active 
surface of HBD

● Signal electrons leave single hit amplitude and background 
electrons leave double hi
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HBD design
● Windowless proximity focusing Cerenkov 
detector

● Both radiator and GEMs operated using 
pure CF

4
 (n=1.00062,L

RAD
=50cm) in the 

same enclosure (<1ppm H
2
O/O

2
)

● Cerenkov from electrons forms blobs 
(r~3.36cm, a~9.9cm2) on image plane 

● 3 stage amplification:
● Triple GEM stack with CsI coating on the 
top surface of 1st GEM foil.

● 1.5mm transfer gaps with total gas gain of 
5000 for a moderate bias

● Anode read out: Hexagonal pads of side 
~1.55cm (a~6.2cm2)

● Hadron blindness: Reverse biased mesh, 
on top of GEM stack collects primary 
ionization from charged hadrons.

● Operated successfully in 09 (p+p) and 
10 (Au+Au)
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Scintillation & HBD Gain 
calibration

● Gain calibration:  
fitting the 
scintillation yield

● ADC count 
distribution from 
identified single 
pad hits fitted to 
an exponential:
● 1/slope= G x <m> 
● <m> average npe/pad
● p+p: <m> = 1
● Au+Au: <m> = 

●  
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HBD in p+p collisions
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HBD operation in p+p collisions
● The 200GeV part of 
run9

● Magnetic field +- 
used for 200GeV part

● Reverse Bias 
operation mode  →
hadron blind

● Clean events
● Relatively simple 
clustering 
algorithms work

S. Rolnick
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Track matching to clusters
● Residual distributions between track projection 
position in the HBD and reconstructed cluster

Source: Open Dalitz electron pairs (m<150MeV, large opening angle)

( ) ~ 0.01 rad        ( z) ~ 1.41 cmσ Δϕ σ Δ

Ilia Ravinovich
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Response in p+p (single vs. none) 
● Response to hadrons and electrons in RB mode

● Central arm tracks projected to HBD

● Single electron: From open Dalitz pairs (m<150MeV,large OA)

Hadron dE/dx signal in the small (~100μm) region above the top GEM 
and in the first transfer gap very small wrt electron Cherenkov signal

Ilia Ravinovich
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Response in p+p (single vs. double)
● Response to hadrons and electrons in RB mode

● Central arm tracks projected to HBD

● Double electron: From closed Dalitz (m<150MeV,oa<?)

Good closed Dalitz and photon conversion rejection 
while maintaining good pair efficiency

Ilia Ravinovich
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Effect on pair spectrum (p+p)
● Rejection in p+p

● Track-cluster matching
– Backplane conversion

– Mis identified pion

– S/B larger by factor ~2

● Cut on cluster charge
– Require maximum

– No close-by clusters

– Rejects conversions and 
closed Dalitz

– S/B larger by factor ~6.5

● Cut on cluster size
– Require minimum size of 

2pads

– S/B larger by ~2.0

Ilia Ravinovich



HBD in Au+Au Collisions
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HBD operation in Au+Au collisions
● In central Au+Au 
events (of highest 
physics interest) 
getting information 
from HBD is difficult

● Huge amount of 
scintillation light

● Almost 100% occupancy

● <npe>/pad ~ 11

● Total signal ~ 20pe

● Simple clusterization 
algorithms fail

Central Au+Au event display
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Sources of difficulty
● High scintillation 
background
● The peak can be simulated in 
a fast MC

 Per pad measured
Npe distribution

Per pad measured
Npe distribution

● Event by event background 
subtraction: multiple 
approaches!

● The high end tail:
● HIP, gitter

● Throw out high firing pads  →
limit bias on background 
estimators

● Very small loss of 
acceptance (~0.4% for <60)

 



19

Subtraction of scintillation
● One approach: Subtract event by event, pad-wise average 
photon yield from every pad

● This reduces occupancy significantly

● p+p algorithms can then be run on subtracted yields 

Before After

M. Makek
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Results of this method
● LHS Black: all id-ed electrons

● Signal (single hit)

● Background (double hit)

● Late conversions (no hit)

● LHS Red: swapped 

● RHS: Black-Red

● The subtracted matching 
distributions match well the 
ones seen in p+p

● S/B = (Black-Red)/Red 43% & 
efficiency ~67%

● Requiring that track should 
point to the max firing pad, 
and putting a threshold on max 
firing pad improves S/B to 28% 
at a cost of about 10% loss in 
efficiency

signal+background
Background (swapped tracks)

M. Makek
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More local background estimation
● Basic idea: The best place to look for an 
estimator of the background for any given 
cluster is its immediate neighborhood

● There is some correlation between charge 
measured in a triplet and charge in the 
surrounding background.

● Exploit this correlation to calcluate on 
cluster-by-cluster basis what the 
scintillation contribution to the 
measured charge in the cluster amounts to

● Background:

● 0.5 * at * (Bkg1 + Bkg2), where

● Mean based: 

– Bkg1 = (Σqfn) /(Σafn)  and

– Bkg2 = (Σqsn) /(Σasn)
● Median based:

– Bkg1 = Med(qfn/afn) and 

– Bkg2 = Med(qsn/asn) 

● Figure of merit in comparison : 

● width of Bkg2-Bkg1 distribution. 

● Notation:

● M
t
 → Measured total charge in triplet area

● Est
9
 → Estimated background from first 

neighbors area (9 pads)

● Est
15

 → Estimated background from second 

neighbors area (15 pads)
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M
t
:Est

9+15

Mean based estimators Median based estimators
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M
t
-Est

9+15

Mean based estimators Median based estimators

subtracted

raw

subtracted

raw
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Efficiencies of local background estimation

● The pre-cluster triplets merged around track projections. The 
efficiencies below plotted are as a function of merging window 
radius (track projection to CG of the pre-clusters)

80-90% 70-80%90-100%

50-60% 40-50%60-70%

20-30% 10-20%30-40%

0-10% Embedded MC
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Rejection of local background estimation

● The pre-cluster triplets merged around track projections. The 
efficiencies below plotted are as a function of merging window 
radius (track projection to CG of the pre-clusters)

80-90% 70-80%90-100%

50-60% 40-50%60-70%

20-30% 10-20%30-40%

0-10% Embedded MC
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Real data golden tracks
● MB events |zvtx| < 10 cm, and containing 
clearly identified electron pairs

● Backplane conv. : eid && M<7MeV && 9Mev<M
cgl
<16Mev && oa

atm
<30mr

● Open Dalitz pairs : eid && M
atm
>10MeV + M

cgl
<50MeV && oa

cgl
>150mr

● Closed Dalitz pairs : eid && M
atm
>10MeV && M

cgl
<50MeV && oa

cgl
<30mr
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Confirming Bplane rejection 

Open symbol : Efficiency from embedded backplane conv. 
Closed symbol : Efficiency from real data backplane conv.

● This shows not only we select a very good sample of backplane 
conversions (if both legs are reconstrcted) but also embedded MC has 
a good control over background rejection estimations
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Last possible level of detail
● Use central arm projection to determine which 
pads are relevant for the track in question

Y. Watanabe

● Do event by event pad by pad subtraction of 
estimated scintillation background

● Sum the charges in the deemed relevant pads
● Determine a threshold for any level of back 
plane conversion electron rejection, and see 
if the efficiency for signal is enough
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Results from pointing method
● This method seems to give a good combination of 
rejection and efficiency. Wizmann collaborators 
have started doing actual analysis using this.

200 GeV, 0-10% centrality62 GeV tuned for x10 rej. 
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Taking this idea a little further

Track projection

First pad

Second pad

Third pad

0.4 cm

4 ρ  bins
3 ζ bins

ζ

ρ

Neighboring pads: background



1st pad distribution(central events)
● At 1st neighbor background >9
● Embedded vs. Swapped tracks (Embed Omegaee )

Center of 
1st  pad

3 
ζ 

bi
ns

4 ρ  bins Edge of 1st  pad

Away from 
2nd  pad

Close to
3rd pad
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2nd pad distribution (central events)
● At 1st neighbor background >9
● Embedded vs. Swapped tracks (Embed Omegaee )

Center 
of 1st  
pad

3 
ζ 

bi
ns

4 ρ  bins Edge of 1st  pad

Away from 
2nd  pad

Close to
3rd pad
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3rd pad distribution (central events)
● At 1st neighbor background >9
● Embedded vs. Swapped tracks (Embed Omegaee )

Center 
of 1st  
pad

3 
ζ 

bi
ns

4 ρ  bins
Edge of 1st  pad

Away from 
2nd  pad

Close to
3rd pad
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NN result: 0-20% most central
AuAu@200 GeV

Testing samples All samples
32



Efficiency vs. cut on NN variable

AuAu 200 GeV 0-20% most central events



Summary
● The HBD was operated in run 9 (p+p) and run 10 
(Au+Au) collisions

● The p+p data analysis seems to show that the 
design objectives are met

● In Au+Au events, the objective is difficult to 
meet as a result of high scintillation 
background

● Multiple approaches to handle the problem are 
being investigated, the current status of 
these approaches was discussed. 
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Backup
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Efficiency and Rejection
centrality: 20-40%

AuAu@200GeV
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Efficiency and Rejection
centrality: 40-60%

AuAu@200GeV
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Efficiency and Rejection
centrality: 60-92%

AuAu@200GeV
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